Basic usage

The VidStab class can be used as a command line script or in your own custom python code.

Using from command line

# Using defaults
python3 -m vidstab --input input_video.mov --output stable_video.avi
# Using a specific keypoint detector
python3 -m vidstab -i input_video.mov -o stable_video.avi -k GFTT

Using VidStab class

from vidstab import VidStab

# Using defaults
stabilizer = VidStab()
stabilizer.stabilize(input_path='input_video.mov', output_path='stable_video.avi')

# Using a specific keypoint detector
stabilizer = VidStab(kp_method='ORB')
stabilizer.stabilize(input_path='input_video.mp4', output_path='stable_video.avi')

# Using a specific keypoint detector and customizing keypoint parameters
stabilizer = VidStab(kp_method='FAST', threshold=42, nonmaxSuppression=False)
stabilizer.stabilize(input_path='input_video.mov', output_path='stable_video.avi')

Advanced usage

Plotting frame to frame transformations

from vidstab import VidStab
import matplotlib.pyplot as plt

stabilizer = VidStab()
stabilizer.stabilize(input_path='input_video.mov', output_path='stable_video.avi')

stabilizer.plot_trajectory()
plt.show()

stabilizer.plot_transforms()
plt.show()

Trajectories

Transforms

image2

image3

Using borders

from vidstab import VidStab

stabilizer = VidStab()

# black borders
stabilizer.stabilize(input_path='input_video.mov',
                     output_path='stable_video.avi',
                     border_type='black')
stabilizer.stabilize(input_path='input_video.mov',
                     output_path='wide_stable_video.avi',
                     border_type='black',
                     border_size=100)

# filled in borders
stabilizer.stabilize(input_path='input_video.mov',
                     output_path='ref_stable_video.avi',
                     border_type='reflect')
stabilizer.stabilize(input_path='input_video.mov',
                     output_path='rep_stable_video.avi',
                     border_type='replicate')

border_size=0

border_size=100

border_type='reflect'

border_type='replicate'

image4

image5

Videoused with permission fromHappyLiving

Using Frame Layering

from vidstab import VidStab, layer_overlay, layer_blend

# init vid stabilizer
stabilizer = VidStab()

# use vidstab.layer_overlay for generating a trail effect
stabilizer.stabilize(input_path=INPUT_VIDEO_PATH,
                     output_path='trail_stable_video.avi',
                     border_type='black',
                     border_size=100,
                     layer_func=layer_overlay)


# create custom overlay function
# here we use vidstab.layer_blend with custom alpha
#   layer_blend will generate a fading trail effect with some motion blur
def layer_custom(foreground, background):
    return layer_blend(foreground, background, foreground_alpha=.8)

# use custom overlay function
stabilizer.stabilize(input_path=INPUT_VIDEO_PATH,
                     output_path='blend_stable_video.avi',
                     border_type='black',
                     border_size=100,
                     layer_func=layer_custom)

layer_func=vidstab.layer_overlay

layer_func=vidstab.layer_blend

image6

image7

Videoused with permission fromHappyLiving

Automatic border sizing

from vidstab import VidStab, layer_overlay

stabilizer = VidStab()

stabilizer.stabilize(input_path=INPUT_VIDEO_PATH,
                     output_path='auto_border_stable_video.avi',
                     border_size='auto',
                     # frame layering to show performance of auto sizing
                     layer_func=layer_overlay)

image8

Stabilizing a frame at a time

The method VidStab.stabilize_frame() can accept numpy arrays to allow stabilization processing a frame at a time. This can allow pre/post processing for each frame to be stabilized; see examples below.

Simplest form

from vidstab.VidStab import VidStab

stabilizer = VidStab()
vidcap = cv2.VideoCapture('input_video.mov')

while True:
     grabbed_frame, frame = vidcap.read()

     if frame is not None:
        # Perform any pre-processing of frame before stabilization here
        pass

     # Pass frame to stabilizer even if frame is None
     # stabilized_frame will be an all black frame until iteration 30
     stabilized_frame = stabilizer.stabilize_frame(input_frame=frame,
                                                   smoothing_window=30)
     if stabilized_frame is None:
         # There are no more frames available to stabilize
         break

     # Perform any post-processing of stabilized frame here
     pass

Example with object tracking

import os
import cv2
from vidstab import VidStab, layer_overlay, download_ostrich_video

# Download test video to stabilize
if not os.path.isfile("ostrich.mp4"):
    download_ostrich_video("ostrich.mp4")

# Initialize object tracker, stabilizer, and video reader
object_tracker = cv2.TrackerCSRT_create()
stabilizer = VidStab()
vidcap = cv2.VideoCapture("ostrich.mp4")

# Initialize bounding box for drawing rectangle around tracked object
object_bounding_box = None

while True:
    grabbed_frame, frame = vidcap.read()

    # Pass frame to stabilizer even if frame is None
    stabilized_frame = stabilizer.stabilize_frame(input_frame=frame, border_size=50)

    # If stabilized_frame is None then there are no frames left to process
    if stabilized_frame is None:
        break

    # Draw rectangle around tracked object if tracking has started
    if object_bounding_box is not None:
        success, object_bounding_box = object_tracker.update(stabilized_frame)

        if success:
            (x, y, w, h) = [int(v) for v in object_bounding_box]
            cv2.rectangle(stabilized_frame, (x, y), (x + w, y + h),
                          (0, 255, 0), 2)

    # Display stabilized output
    cv2.imshow('Frame', stabilized_frame)

    key = cv2.waitKey(5)

    # Select ROI for tracking and begin object tracking
    # Non-zero frame indicates stabilization process is warmed up
    if stabilized_frame.sum() > 0 and object_bounding_box is None:
        object_bounding_box = cv2.selectROI("Frame",
                                            stabilized_frame,
                                            fromCenter=False,
                                            showCrosshair=True)
        object_tracker.init(stabilized_frame, object_bounding_box)
    elif key == 27:
        break

vidcap.release()
cv2.destroyAllWindows()

image10

Working with live video

The VidStab class can also process live video streams. The underlying video reader is cv2.VideoCapture(documentation). The relevant snippet from the documentation for stabilizing live video is:

Its argument can be either the device index or the name of a video file. Device index is just the number to specify which camera. Normally one camera will be connected (as in my case). So I simply pass 0 (or -1). You can select the second camera by passing 1 and so on.

The input_path argument of the VidStab.stabilize method can accept integers that will be passed directly to cv2.VideoCapture as a device index. You can also pass a device index to the --input argument for command line usage.

One notable difference between live feeds and video files is that webcam footage does not have a definite end point. The options for ending a live video stabilization are to set the max length using the max_frames argument or to manually stop the process by pressing the Esc key or the Q key. If max_frames is not provided then no progress bar can be displayed for live video stabilization processes.

Example

from vidstab import VidStab

stabilizer = VidStab()
stabilizer.stabilize(input_path=0,
                     output_path='stable_webcam.avi',
                     max_frames=1000,
                     playback=True)

image9

Transform file writing & reading

Generating and saving transforms to file

import numpy as np
from vidstab import VidStab, download_ostrich_video

# Download video if needed
download_ostrich_video(INPUT_VIDEO_PATH)

# Generate transforms and save to TRANSFORMATIONS_PATH as csv (no headers)
stabilizer = VidStab()
stabilizer.gen_transforms(INPUT_VIDEO_PATH)
np.savetxt(TRANSFORMATIONS_PATH, stabilizer.transforms, delimiter=',')

File at TRANSFORMATIONS_PATH is of the form shown below. The 3 columns represent delta x, delta y, and delta angle respectively.

-9.249733913760086068e+01,2.953221378387767970e+01,-2.875918912994855636e-02
-8.801434576214279559e+01,2.741942225927152776e+01,-2.715232319470826938e-02

Reading and using transforms from file

Below example reads a file of transforms and applies to an arbitrary video. The transform file is of the form shown in above section.

import numpy as np
from vidstab import VidStab

# Read in csv transform data, of form (delta x, delta y, delta angle):
transforms = np.loadtxt(TRANSFORMATIONS_PATH, delimiter=',')

# Create stabilizer and supply numpy array of transforms
stabilizer = VidStab()
stabilizer.transforms = transforms

# Apply stabilizing transforms to INPUT_VIDEO_PATH and save to OUTPUT_VIDEO_PATH
stabilizer.apply_transforms(INPUT_VIDEO_PATH, OUTPUT_VIDEO_PATH)